Cargando…
Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters
Maximum a posteriori estimation (MAP) with Dirichlet prior has been shown to be effective in improving the parameter learning of Bayesian networks when the available data are insufficient. Given no extra domain knowledge, uniform prior is often considered for regularization. However, when the underl...
Autores principales: | Di, Ruohai, Wang, Peng, He, Chuchao, Guo, Zhigao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534477/ https://www.ncbi.nlm.nih.gov/pubmed/34682007 http://dx.doi.org/10.3390/e23101283 |
Ejemplares similares
-
Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open‐source R package mapbayr
por: Le Louedec, Félicien, et al.
Publicado: (2021) -
On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2013) -
Score‐based measurement invariance checks for Bayesian maximum‐a‐posteriori estimates in item response theory
por: Debelak, Rudolf, et al.
Publicado: (2022) -
Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids
por: Serang, Oliver, et al.
Publicado: (2012) -
A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors
por: Hughes, Jasmine H., et al.
Publicado: (2021)