Cargando…
Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocaps...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534524/ https://www.ncbi.nlm.nih.gov/pubmed/34685624 http://dx.doi.org/10.3390/cells10102644 |
_version_ | 1784587573654454272 |
---|---|
author | Gandhi, Pauravi J. Gawande, Dinesh Y. Shelkar, Gajanan P. Gakare, Sukanya G. Kiritoshi, Takaki Ji, Guangchen Misra, Bishal Pavuluri, Ratnamala Liu, Jinxu Neugebauer, Volker Dravid, Shashank M. |
author_facet | Gandhi, Pauravi J. Gawande, Dinesh Y. Shelkar, Gajanan P. Gakare, Sukanya G. Kiritoshi, Takaki Ji, Guangchen Misra, Bishal Pavuluri, Ratnamala Liu, Jinxu Neugebauer, Volker Dravid, Shashank M. |
author_sort | Gandhi, Pauravi J. |
collection | PubMed |
description | Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ(+)) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics. |
format | Online Article Text |
id | pubmed-8534524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85345242021-10-23 Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain Gandhi, Pauravi J. Gawande, Dinesh Y. Shelkar, Gajanan P. Gakare, Sukanya G. Kiritoshi, Takaki Ji, Guangchen Misra, Bishal Pavuluri, Ratnamala Liu, Jinxu Neugebauer, Volker Dravid, Shashank M. Cells Article Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ(+)) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics. MDPI 2021-10-03 /pmc/articles/PMC8534524/ /pubmed/34685624 http://dx.doi.org/10.3390/cells10102644 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gandhi, Pauravi J. Gawande, Dinesh Y. Shelkar, Gajanan P. Gakare, Sukanya G. Kiritoshi, Takaki Ji, Guangchen Misra, Bishal Pavuluri, Ratnamala Liu, Jinxu Neugebauer, Volker Dravid, Shashank M. Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title | Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title_full | Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title_fullStr | Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title_full_unstemmed | Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title_short | Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain |
title_sort | dysfunction of glutamate delta-1 receptor-cerebellin 1 trans-synaptic signaling in the central amygdala in chronic pain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534524/ https://www.ncbi.nlm.nih.gov/pubmed/34685624 http://dx.doi.org/10.3390/cells10102644 |
work_keys_str_mv | AT gandhipauravij dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT gawandedineshy dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT shelkargajananp dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT gakaresukanyag dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT kiritoshitakaki dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT jiguangchen dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT misrabishal dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT pavuluriratnamala dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT liujinxu dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT neugebauervolker dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain AT dravidshashankm dysfunctionofglutamatedelta1receptorcerebellin1transsynapticsignalinginthecentralamygdalainchronicpain |