Cargando…
Determination of Technological Parameters and Characterization of Microbiota of the Spontaneous Sourdough Fermentation of Hull-Less Barley
The development of microorganisms of sourdough and biodiversity of microbiota can be influenced by changing the parameters of the technological process such as the ratio of flour and added water, the fermentation temperature and time. The Box–Behnken design methodology was used to determine the opti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534550/ https://www.ncbi.nlm.nih.gov/pubmed/34681301 http://dx.doi.org/10.3390/foods10102253 |
Sumario: | The development of microorganisms of sourdough and biodiversity of microbiota can be influenced by changing the parameters of the technological process such as the ratio of flour and added water, the fermentation temperature and time. The Box–Behnken design methodology was used to determine the optimal parameters for the three-phase spontaneous backslopping fermentation process of hull-less barley sourdough, as well as to characterize the microbiological diversity. The optimized parameters of backslopping fermentation are flour and water ratio 1:1.13, temperature 30 °C, time 24 h in the 1st backslopping; the inoculate, flour and water ratio 1:1:1.3, temperature 31 °C, time 14 h in the 2nd backslopping, and the inoculate, flour and water ratio 1:1:1.5, and temperature 28.5 °C, time 12 h in the 3rd step of backslopping. In the controlled spontaneous fermentation environment in three backslopping steps, the microbiological research of hull-less barley sourdough has confirmed the dominance of species Pediococcus pentosaceus in the 3rd backslopping step of spontaneous fermentation. The developed spontaneous hull-less barley sourdough is consistent with the number of lactic bacteria and yeasts in line with that seen by the active sourdough. |
---|