Cargando…
A Multi-Modal Fusion Method Based on Higher-Order Orthogonal Iteration Decomposition
Multi-modal fusion can achieve better predictions through the amalgamation of information from different modalities. To improve the performance of accuracy, a method based on Higher-order Orthogonal Iteration Decomposition and Projection (HOIDP) is proposed, in the fusion process, higher-order ortho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534596/ https://www.ncbi.nlm.nih.gov/pubmed/34682073 http://dx.doi.org/10.3390/e23101349 |
Sumario: | Multi-modal fusion can achieve better predictions through the amalgamation of information from different modalities. To improve the performance of accuracy, a method based on Higher-order Orthogonal Iteration Decomposition and Projection (HOIDP) is proposed, in the fusion process, higher-order orthogonal iteration decomposition algorithm and factor matrix projection are used to remove redundant information duplicated inter-modal and produce fewer parameters with minimal information loss. The performance of the proposed method is verified by three different multi-modal datasets. The numerical results validate the accuracy of the performance of the proposed method having 0.4% to 4% improvement in sentiment analysis, 0.3% to 8% improvement in personality trait recognition, and 0.2% to 25% improvement in emotion recognition at three different multi-modal datasets compared with other 5 methods. |
---|