Cargando…
Reinforcement Learning-Based Multihop Relaying: A Decentralized Q-Learning Approach
Conventional optimization-based relay selection for multihop networks cannot resolve the conflict between performance and cost. The optimal selection policy is centralized and requires local channel state information (CSI) of all hops, leading to high computational complexity and signaling overhead....
Autores principales: | Wang, Xiaowei, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534598/ https://www.ncbi.nlm.nih.gov/pubmed/34682034 http://dx.doi.org/10.3390/e23101310 |
Ejemplares similares
-
SF-Partition-Based Clustering and Relaying Scheme for Resolving Near–Far Unfairness in IoT Multihop LoRa Networks
por: Mugerwa, Dick, et al.
Publicado: (2022) -
Multi-Copy Relay Node Selection Strategy Based on Reinforcement Learning
por: Gao, Yang, et al.
Publicado: (2023) -
Security for multihop wireless networks
por: Khan, Shafiullah, et al.
Publicado: (2014) -
Security for Multihop Wireless Networks
por: Khan, Shafiullah, et al.
Publicado: (2014) -
Multihop Wireless Networks: Opportunistic Routing
por: Zeng, Kai, et al.
Publicado: (2011)