Cargando…
The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers
In the present article we propose the application of variants of the mutual information function as characteristic fingerprints of biomolecular sequences for classification analysis. In particular, we consider the resolved mutual information functions based on Shannon-, Rényi-, and Tsallis-entropy....
Autores principales: | Bohnsack, Katrin Sophie, Kaden, Marika, Abel, Julia, Saralajew, Sascha, Villmann, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534762/ https://www.ncbi.nlm.nih.gov/pubmed/34682081 http://dx.doi.org/10.3390/e23101357 |
Ejemplares similares
-
Learning vector quantization as an interpretable classifier for the detection of SARS-CoV-2 types based on their RNA sequences
por: Kaden, Marika, et al.
Publicado: (2021) -
Application of an interpretable classification model on Early Folding Residues during protein folding
por: Bittrich, Sebastian, et al.
Publicado: (2019) -
10th Workshop on Self-Organizing Maps
por: Villmann, Thomas, et al.
Publicado: (2014) -
Clustering by Fuzzy Neural Gas and Evaluation of Fuzzy Clusters
por: Geweniger, Tina, et al.
Publicado: (2013) -
AI-Based Multi Sensor Fusion for Smart Decision Making: A Bi-Functional System for Single Sensor Evaluation in a Classification Task
por: Zoghlami, Feryel, et al.
Publicado: (2021)