Cargando…
Using Non-Additive Entropy to Enhance Convolutional Neural Features for Texture Recognition
Here we present a study on the use of non-additive entropy to improve the performance of convolutional neural networks for texture description. More precisely, we introduce the use of a local transform that associates each pixel with a measure of local entropy and use such alternative representation...
Autores principales: | Florindo, Joao, Metze, Konradin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534779/ https://www.ncbi.nlm.nih.gov/pubmed/34681983 http://dx.doi.org/10.3390/e23101259 |
Ejemplares similares
-
Classification of Thyroid Follicular Lesions Based on Nuclear Texture Features—Lesion Size Matters
por: Metze, Konradin, et al.
Publicado: (2010) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Molecular characteristics and chromatin texture features in acute promyelocytic leukemia
por: De Mello, Mariana R B, et al.
Publicado: (2012) -
Computerized texture analysis of atypical immature myeloid precursors in patients with myelodysplastic syndromes: an entity between blasts and promyelocytes
por: Vido, Joyce R, et al.
Publicado: (2011) -
Automatic Detection of Epilepsy Based on Entropy Feature Fusion and Convolutional Neural Network
por: Sun, Yongxin, et al.
Publicado: (2022)