Cargando…
Polar Vortex Multi-Day Intensity Prediction Relying on New Deep Learning Model: A Combined Convolution Neural Network with Long Short-Term Memory Based on Gaussian Smoothing Method
The variation of polar vortex intensity is a significant factor affecting the atmospheric conditions and weather in the Northern Hemisphere (NH) and even the world. However, previous studies on the prediction of polar vortex intensity are insufficient. This paper establishes a deep learning (DL) mod...
Autores principales: | Peng, Kecheng, Cao, Xiaoqun, Liu, Bainian, Guo, Yanan, Xiao, Chaohao, Tian, Wenlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534803/ https://www.ncbi.nlm.nih.gov/pubmed/34682038 http://dx.doi.org/10.3390/e23101314 |
Ejemplares similares
-
A Gaussian to Vector Vortex Beam Generator with a Programmable State of Polarization
por: Piłka, Jacek, et al.
Publicado: (2022) -
Compton Scattering of γ-Ray Vortex with Laguerre Gaussian Wave Function
por: Maruyama, Tomoyuki, et al.
Publicado: (2019) -
Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach
por: Naik, Dinesh N., et al.
Publicado: (2017) -
Polar vortex crystals: Emergence and structure
por: Siegelman, Lia, et al.
Publicado: (2022) -
Experimental generation of arbitrary abruptly autofusing Circular Airy Gaussian vortex vector beams
por: Hu, Xiao-Bo, et al.
Publicado: (2022)