Cargando…
Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
In a host of business applications, biomedical and epidemiological studies, the problem of multicollinearity among predictor variables is a frequent issue in longitudinal data analysis for linear mixed models (LMM). We consider an efficient estimation strategy for high-dimensional data application,...
Autores principales: | Opoku, Eugene A., Ahmed, Syed Ejaz, Nathoo, Farouk S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534815/ https://www.ncbi.nlm.nih.gov/pubmed/34682072 http://dx.doi.org/10.3390/e23101348 |
Ejemplares similares
-
Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
por: Opoku, Eugene A., et al.
Publicado: (2021) -
Ensemble Linear Subspace Analysis of High-Dimensional Data
por: Ahmed, S. Ejaz, et al.
Publicado: (2021) -
On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
por: Jayaraman, Balaji, et al.
Publicado: (2020) -
Sparse representations of high dimensional neural data
por: Mody, Sandeep K., et al.
Publicado: (2022) -
Polygenic Modeling with Bayesian Sparse Linear Mixed Models
por: Zhou, Xiang, et al.
Publicado: (2013)