Cargando…
Variational Sparse Bayesian Learning for Estimation of Gaussian Mixture Distributed Wireless Channels
In this paper, variational sparse Bayesian learning is utilized to estimate the multipath parameters for wireless channels. Due to its flexibility to fit any probability density function (PDF), the Gaussian mixture model (GMM) is introduced to represent the complicated fading phenomena in various co...
Autores principales: | Kong, Lingjin, Zhang, Xiaoying, Zhao, Haitao, Wei, Jibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534843/ https://www.ncbi.nlm.nih.gov/pubmed/34681992 http://dx.doi.org/10.3390/e23101268 |
Ejemplares similares
-
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020) -
Diffusion-Based EM Algorithm for Distributed Estimation of Gaussian Mixtures in Wireless Sensor Networks
por: Weng, Yang, et al.
Publicado: (2011) -
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014) -
Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
por: Dai, Jisheng, et al.
Publicado: (2015) -
Bayesian Gaussian distributional regression models for more efficient norm estimation
por: Voncken, Lieke, et al.
Publicado: (2020)