Cargando…
Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features
To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. Thes...
Autores principales: | Tian, Yuchi, Komolafe, Temitope Emmanuel, Zheng, Jian, Zhou, Guofeng, Chen, Tao, Zhou, Bo, Yang, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534850/ https://www.ncbi.nlm.nih.gov/pubmed/34679573 http://dx.doi.org/10.3390/diagnostics11101875 |
Ejemplares similares
-
Preoperatively predicting early response of HCC to TACE using clinical indicators and MRI features
por: Li, Zhi-Wei, et al.
Publicado: (2022) -
MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features
por: Ma, Xiaolu, et al.
Publicado: (2019) -
Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients
por: Zheng, Bo-Hao, et al.
Publicado: (2018) -
Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma
por: Yang, Jin, et al.
Publicado: (2023) -
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma
por: Calabrese, Evan, et al.
Publicado: (2022)