Cargando…
Mining Primary Care Electronic Health Records for Automatic Disease Phenotyping: A Transparent Machine Learning Framework
(1) Background: We aimed to develop a transparent machine-learning (ML) framework to automatically identify patients with a condition from electronic health records (EHRs) via a parsimonious set of features. (2) Methods: We linked multiple sources of EHRs, including 917,496,869 primary care records...
Autores principales: | Fernández-Gutiérrez, Fabiola, Kennedy, Jonathan I., Cooksey, Roxanne, Atkinson, Mark, Choy, Ernest, Brophy, Sinead, Huo, Lin, Zhou, Shang-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534858/ https://www.ncbi.nlm.nih.gov/pubmed/34679609 http://dx.doi.org/10.3390/diagnostics11101908 |
Ejemplares similares
-
Development of data-driven framework for automatically identifying patient cohorts from linked electronic health records
por: Fern'andez-Guti'errez, Fabiola, et al.
Publicado: (2017) -
Real-world use of an etanercept biosimilar including selective versus automatic substitution in inflammatory arthritis patients: a UK-based electronic health records study
por: Cooksey, Roxanne, et al.
Publicado: (2022) -
Predicting a diagnosis of ankylosing spondylitis using primary care health records–A machine learning approach
por: Kennedy, Jonathan, et al.
Publicado: (2023) -
Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis
por: Zhou, Shang-Ming, et al.
Publicado: (2016) -
Shielding reduced incidence of COVID-19 in patients with inflammatory arthritis but vulnerability is associated with increased mortality
por: Cooksey, Roxanne, et al.
Publicado: (2022)