Cargando…
The Law of the Iterated Logarithm for Linear Processes Generated by a Sequence of Stationary Independent Random Variables under the Sub-Linear Expectation
In this paper, we obtain the law of iterated logarithm for linear processes in sub-linear expectation space. It is established for strictly stationary independent random variable sequences with finite second-order moments in the sense of non-additive capacity.
Autores principales: | Liu, Wei, Zhang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534869/ https://www.ncbi.nlm.nih.gov/pubmed/34682037 http://dx.doi.org/10.3390/e23101313 |
Ejemplares similares
-
The law of the iterated logarithm for LNQD sequences
por: Zhang, Yong
Publicado: (2018) -
Linear independence of logarithms of algebraic numbers
por: Waldschmidt, Michel
Publicado: (1992) -
A characterization of Chover-type law of iterated logarithm
por: Li, Deli, et al.
Publicado: (2014) -
A law of iterated logarithm for the subfractional Brownian motion and an application
por: Qi, Hongsheng, et al.
Publicado: (2018) -
Liquid Crystal Lensacons, Logarithmic and Linear Axicons
por: Algorri, José Francisco, et al.
Publicado: (2014)