Cargando…
Inference on COVID-19 Epidemiological Parameters Using Bayesian Survival Analysis
The need to provide accurate predictions in the evolution of the COVID-19 epidemic has motivated the development of different epidemiological models. These models require a careful calibration of their parameters to capture the dynamics of the phenomena and the uncertainty in the data. This work ana...
Autor principal: | Bardelli, Chiara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534885/ https://www.ncbi.nlm.nih.gov/pubmed/34681986 http://dx.doi.org/10.3390/e23101262 |
Ejemplares similares
-
Bayesian inference of epidemiological parameters from transmission experiments
por: Hu, Ben, et al.
Publicado: (2017) -
Bayesian inference: parameter estimation and decisions
por: Harney, Hanns L
Publicado: (2003) -
Efficient Bayesian inference of fully stochastic epidemiological models with applications to COVID-19
por: Li, Yuting I., et al.
Publicado: (2021) -
Bayesian inference of biochemical kinetic parameters using the linear noise approximation
por: Komorowski, Michał, et al.
Publicado: (2009) -
Inferring Epidemiological Dynamics with Bayesian Coalescent Inference: The Merits of Deterministic and Stochastic Models
por: Popinga, Alex, et al.
Publicado: (2015)