Cargando…
Leak Detection in Water Pipes Based on Maximum Entropy Version of Least Square Twin K-Class Support Vector Machine
Numerous novel improved support vector machine (SVM) methods are used in leak detection of water pipelines at present. The least square twin K-class support vector machine (LST-KSVC) is a novel simple and fast multi-classification method. However, LST-KSVC has a non-negligible drawback that it assig...
Autores principales: | Liu, Mingyang, Yang, Jin, Zheng, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534886/ https://www.ncbi.nlm.nih.gov/pubmed/34681971 http://dx.doi.org/10.3390/e23101247 |
Ejemplares similares
-
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
por: Wang, Tian, et al.
Publicado: (2013) -
Single Directional SMO Algorithm for Least Squares Support Vector Machines
por: Shao, Xigao, et al.
Publicado: (2013) -
Employing Ray-Tracing and Least-Squares Support Vector Machines for Localisation †
por: Chitambira, Benny, et al.
Publicado: (2018) -
Statistics lectures II: maximum likelihood and least squares theory
por: Hudson, Derek J
Publicado: (1964) -
Global-local least-squares support vector machine (GLocal-LS-SVM)
por: Youssef Ali Amer, Ahmed
Publicado: (2023)