Cargando…

Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques

Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) tec...

Descripción completa

Detalles Bibliográficos
Autores principales: Baalman, Sarah W. E., Lopes, Ricardo R., Ramos, Lucas A., Neefs, Jolien, Driessen, Antoine H. G., van Boven, WimJan P., de Mol, Bas A. J. M., Marquering, Henk A., de Groot, Joris R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534896/
https://www.ncbi.nlm.nih.gov/pubmed/34679485
http://dx.doi.org/10.3390/diagnostics11101787
_version_ 1784587654086524928
author Baalman, Sarah W. E.
Lopes, Ricardo R.
Ramos, Lucas A.
Neefs, Jolien
Driessen, Antoine H. G.
van Boven, WimJan P.
de Mol, Bas A. J. M.
Marquering, Henk A.
de Groot, Joris R.
author_facet Baalman, Sarah W. E.
Lopes, Ricardo R.
Ramos, Lucas A.
Neefs, Jolien
Driessen, Antoine H. G.
van Boven, WimJan P.
de Mol, Bas A. J. M.
Marquering, Henk A.
de Groot, Joris R.
author_sort Baalman, Sarah W. E.
collection PubMed
description Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) techniques may assist in the improvement of clinical prediction models for patient selection. The aim of this study is to investigate how available baseline characteristics predict AF recurrence after SA using ML techniques. One-hundred-sixty clinical baseline variables were collected from 446 AF patients undergoing SA in our tertiary referral center. Multiple ML models were trained on five outcome measurements, including either all or a number of key variables selected by using the least absolute shrinkage and selection operator (LASSO). There was no difference in model performance between different ML techniques or outcome measurements. Variable selection significantly improved model performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed a higher model performance in younger patients (<55 years, AUC: 0.82 vs. >55 years, AUC 0.66). Recurrences of AF after SA can be predicted best when using a selection of baseline characteristics, particularly in young patients.
format Online
Article
Text
id pubmed-8534896
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85348962021-10-23 Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques Baalman, Sarah W. E. Lopes, Ricardo R. Ramos, Lucas A. Neefs, Jolien Driessen, Antoine H. G. van Boven, WimJan P. de Mol, Bas A. J. M. Marquering, Henk A. de Groot, Joris R. Diagnostics (Basel) Article Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) techniques may assist in the improvement of clinical prediction models for patient selection. The aim of this study is to investigate how available baseline characteristics predict AF recurrence after SA using ML techniques. One-hundred-sixty clinical baseline variables were collected from 446 AF patients undergoing SA in our tertiary referral center. Multiple ML models were trained on five outcome measurements, including either all or a number of key variables selected by using the least absolute shrinkage and selection operator (LASSO). There was no difference in model performance between different ML techniques or outcome measurements. Variable selection significantly improved model performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed a higher model performance in younger patients (<55 years, AUC: 0.82 vs. >55 years, AUC 0.66). Recurrences of AF after SA can be predicted best when using a selection of baseline characteristics, particularly in young patients. MDPI 2021-09-28 /pmc/articles/PMC8534896/ /pubmed/34679485 http://dx.doi.org/10.3390/diagnostics11101787 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Baalman, Sarah W. E.
Lopes, Ricardo R.
Ramos, Lucas A.
Neefs, Jolien
Driessen, Antoine H. G.
van Boven, WimJan P.
de Mol, Bas A. J. M.
Marquering, Henk A.
de Groot, Joris R.
Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_full Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_fullStr Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_full_unstemmed Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_short Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_sort prediction of atrial fibrillation recurrence after thoracoscopic surgical ablation using machine learning techniques
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534896/
https://www.ncbi.nlm.nih.gov/pubmed/34679485
http://dx.doi.org/10.3390/diagnostics11101787
work_keys_str_mv AT baalmansarahwe predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT lopesricardor predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT ramoslucasa predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT neefsjolien predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT driessenantoinehg predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT vanbovenwimjanp predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT demolbasajm predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT marqueringhenka predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT degrootjorisr predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques