Cargando…
A Penalized Matrix Normal Mixture Model for Clustering Matrix Data
Along with advances in technology, matrix data, such as medical/industrial images, have emerged in many practical fields. These data usually have high dimensions and are not easy to cluster due to their intrinsic correlated structure among rows and columns. Most approaches convert matrix data to mul...
Autores principales: | Heo, Jinwon, Baek, Jangsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534904/ https://www.ncbi.nlm.nih.gov/pubmed/34681973 http://dx.doi.org/10.3390/e23101249 |
Ejemplares similares
-
A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model
por: Naderi, Mehrdad, et al.
Publicado: (2020) -
A Comparison of Migrant Integration Policies via Mixture of Matrix-Normals
por: Alaimo, Leonardo Salvatore, et al.
Publicado: (2022) -
Survival Analysis by Penalized Regression and Matrix Factorization
por: Lai, Yeuntyng, et al.
Publicado: (2013) -
Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data
por: Silva, Anjali, et al.
Publicado: (2023) -
The Q-Matrix Anchored Mixture Rasch Model
por: Tseng, Ming-Chi, et al.
Publicado: (2021)