Cargando…
3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset
Quantitative MRI combines non-invasive imaging techniques to reveal alterations in muscle pathophysiology. Creating muscle-specific labels manually is time consuming and requires an experienced examiner. Semi-automatic and fully automatic methods reduce segmentation time significantly. Current machi...
Autores principales: | Rohm, Marlena, Markmann, Marius, Forsting, Johannes, Rehmann, Robert, Froeling, Martijn, Schlaffke, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534967/ https://www.ncbi.nlm.nih.gov/pubmed/34679445 http://dx.doi.org/10.3390/diagnostics11101747 |
Ejemplares similares
-
High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle
por: Forsting, Johannes, et al.
Publicado: (2021) -
Quantitative muscle MRI captures early muscle degeneration in calpainopathy
por: Forsting, Johannes, et al.
Publicado: (2022) -
Dysregulation of Metabolism and Proteostasis in Skeletal Muscle of a Presymptomatic Pompe Mouse Model
por: Rohm, Marlena, et al.
Publicado: (2023) -
On the sensitivity of the diffusion MRI signal to brain activity in response to a motor cortex paradigm
por: De Luca, Alberto, et al.
Publicado: (2019) -
Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets
por: Billot, Benjamin, et al.
Publicado: (2023)