Cargando…
Deep Semi-Supervised Algorithm for Learning Cluster-Oriented Representations of Medical Images Using Partially Observable DICOM Tags and Images
The task of automatically extracting large homogeneous datasets of medical images based on detailed criteria and/or semantic similarity can be challenging because the acquisition and storage of medical images in clinical practice is not fully standardised and can be prone to errors, which are often...
Autores principales: | Manojlović, Teo, Štajduhar, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534981/ https://www.ncbi.nlm.nih.gov/pubmed/34679618 http://dx.doi.org/10.3390/diagnostics11101920 |
Ejemplares similares
-
DeepDicomSort: An Automatic Sorting Algorithm for Brain Magnetic Resonance Imaging Data
por: van der Voort, Sebastian R., et al.
Publicado: (2020) -
Managing DICOM images: Tips and tricks for the radiologist
por: Varma, Dandu Ravi
Publicado: (2012) -
Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data
por: Fischer, Felix, et al.
Publicado: (2015) -
Semi-Supervised Segmentation of Ultrasound Images Based on Patch Representation and Continuous Min Cut
por: Ciurte, Anca, et al.
Publicado: (2014) -
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
por: Peikari, Mohammad, et al.
Publicado: (2018)