Cargando…
Using Transfer Learning Method to Develop an Artificial Intelligence Assisted Triaging for Endotracheal Tube Position on Chest X-ray
Endotracheal tubes (ETTs) provide a vital connection between the ventilator and patient; however, improper placement can hinder ventilation efficiency or injure the patient. Chest X-ray (CXR) is the most common approach to confirming ETT placement; however, technicians require considerable expertise...
Autores principales: | Yuan, Kuo-Ching, Tsai, Lung-Wen, Lai, Kevin S., Teng, Sing-Teck, Lo, Yu-Sheng, Peng, Syu-Jyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534985/ https://www.ncbi.nlm.nih.gov/pubmed/34679542 http://dx.doi.org/10.3390/diagnostics11101844 |
Ejemplares similares
-
Determining Carina and Clavicular Distance-Dependent Positioning of Endotracheal Tube in Critically Ill Patients: An Artificial Intelligence-Based Approach
por: Tsai, Lung-Wen, et al.
Publicado: (2022) -
Double-Lumen Endotracheal Tube—Predicting Insertion Depth and Tube Size Based on Patient’s Chest X-ray Image Data and 4 Other Body Parameters
por: Chang, Tsai-Rong, et al.
Publicado: (2022) -
A robust approach for endotracheal tube localization in chest radiographs
por: Hsu, Chung-Chian, et al.
Publicado: (2023) -
Multi-modal trained artificial intelligence solution to triage chest X-ray for COVID-19 using pristine ground-truth, versus radiologists
por: Tan, Tao, et al.
Publicado: (2022) -
An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data
por: Kim, Chris K., et al.
Publicado: (2022)