Cargando…
Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification
The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the s...
Autores principales: | Liu, Yongkai, Zheng, Haoxin, Liang, Zhengrong, Miao, Qi, Brisbane, Wayne G., Marks, Leonard S., Raman, Steven S., Reiter, Robert E., Yang, Guang, Sung, Kyunghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535024/ https://www.ncbi.nlm.nih.gov/pubmed/34679484 http://dx.doi.org/10.3390/diagnostics11101785 |
Ejemplares similares
-
Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network
por: Jiang, Wenting, et al.
Publicado: (2023) -
Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation With Inter-Rater Variability Analysis
por: Liu, Yongkai, et al.
Publicado: (2021) -
Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions
por: Brancato, Valentina, et al.
Publicado: (2021) -
Cirrhosis Classification Based on Texture Classification of Random Features
por: Liu, Hui, et al.
Publicado: (2014) -
Standardization of Multiparametric Prostate MR Imaging Using PI-RADS
por: Bomers, Joyce G. R., et al.
Publicado: (2014)