Cargando…
Interaction of Carbon Dots from Grilled Spanish Mackerel with Human Serum Albumin, γ-Globulin and Fibrinogen
The potential biological effects of food-borne carbon dots (FCDs) generated during food heating procedures on human health has received great attention. The FCDs will be inevitably exposed to blood proteins along with our daily diet to produce unknown biological effects. In this study, the interacti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535050/ https://www.ncbi.nlm.nih.gov/pubmed/34681389 http://dx.doi.org/10.3390/foods10102336 |
Sumario: | The potential biological effects of food-borne carbon dots (FCDs) generated during food heating procedures on human health has received great attention. The FCDs will be inevitably exposed to blood proteins along with our daily diet to produce unknown biological effects. In this study, the interaction between FCDs extracted from grilled Spanish mackerel and three main types of human plasma proteins including human serum albumin (HSA), human γ-globulin (HGG) and human fibrinogen (HF) was reported. It was found that the grilled Spanish mackerel FCDs could affect the morphology, size and surface electrical properties of the three proteins. The interaction between the FCDs and proteins had different effects on the secondary structure of the three proteins through a static mechanism. The tested HSA, HGG, and HF could adsorb FCDs to reach saturation state within 0.5 min after the adsorption happened. The binding affinity of the FCDs to the plasma proteins was sorted as follows: HF > HGG > HSA. The results of FCDs interacted with plasma proteins provided useful information in the assessment of the safety of FCDs in our daily diet. |
---|