Cargando…

Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage

The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Han, Xu, Changsu, Qi, Xin, Wang, Ziming, Wang, Jinfeng, Zhou, Wenqi, Wang, Qi, Wang, Jinwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535082/
https://www.ncbi.nlm.nih.gov/pubmed/34681362
http://dx.doi.org/10.3390/foods10102314
_version_ 1784587691926487040
author Tang, Han
Xu, Changsu
Qi, Xin
Wang, Ziming
Wang, Jinfeng
Zhou, Wenqi
Wang, Qi
Wang, Jinwu
author_facet Tang, Han
Xu, Changsu
Qi, Xin
Wang, Ziming
Wang, Jinfeng
Zhou, Wenqi
Wang, Qi
Wang, Jinwu
author_sort Tang, Han
collection PubMed
description The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the corn grain unloading stage was verified by a 3D laser scanner and the “spherical particle filling method”. The grain cylinder was divided into six areas, and the periodic pulsation characteristics at different heights were explored through simulation tests. The results showed that the faster the average speed of corn grain changes in unit time, the more significant the periodic pulsation characteristics were as the height of grain unloading increased. The corn grain pulsateon in the grain cylinder exhibited gradual upward transmission and gradual amplification in the process of transmission. The average velocity decreased with increasing height. The direct cause of pulsation was the variation in the average stress between grain layers. Simulation analysis of grain unloading for different half cone angles of the grain cylinder was carried out. The change in corn grain average velocity over time in the area below 20 mm of the upper free surface was extracted. The results showed that the speed of the top corn grain increased with increasing the half cone angle, and the periodic pulsation phenomenon became more obvious with increasing the half cone angle at half cone angles of 30–65°. A half cone angle of 65–70° marked the critical state of corn grain flow changing from funnel flow to overall flow in the grain cylinder. This study provides a method for studying the periodic pulsation characteristics of different crops during the grain unloading stage and provides a technical reference for the safe design of grain unloading equipment.
format Online
Article
Text
id pubmed-8535082
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85350822021-10-23 Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage Tang, Han Xu, Changsu Qi, Xin Wang, Ziming Wang, Jinfeng Zhou, Wenqi Wang, Qi Wang, Jinwu Foods Article The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the corn grain unloading stage was verified by a 3D laser scanner and the “spherical particle filling method”. The grain cylinder was divided into six areas, and the periodic pulsation characteristics at different heights were explored through simulation tests. The results showed that the faster the average speed of corn grain changes in unit time, the more significant the periodic pulsation characteristics were as the height of grain unloading increased. The corn grain pulsateon in the grain cylinder exhibited gradual upward transmission and gradual amplification in the process of transmission. The average velocity decreased with increasing height. The direct cause of pulsation was the variation in the average stress between grain layers. Simulation analysis of grain unloading for different half cone angles of the grain cylinder was carried out. The change in corn grain average velocity over time in the area below 20 mm of the upper free surface was extracted. The results showed that the speed of the top corn grain increased with increasing the half cone angle, and the periodic pulsation phenomenon became more obvious with increasing the half cone angle at half cone angles of 30–65°. A half cone angle of 65–70° marked the critical state of corn grain flow changing from funnel flow to overall flow in the grain cylinder. This study provides a method for studying the periodic pulsation characteristics of different crops during the grain unloading stage and provides a technical reference for the safe design of grain unloading equipment. MDPI 2021-09-29 /pmc/articles/PMC8535082/ /pubmed/34681362 http://dx.doi.org/10.3390/foods10102314 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tang, Han
Xu, Changsu
Qi, Xin
Wang, Ziming
Wang, Jinfeng
Zhou, Wenqi
Wang, Qi
Wang, Jinwu
Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title_full Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title_fullStr Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title_full_unstemmed Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title_short Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
title_sort study on periodic pulsation characteristics of corn grain in a grain cylinder during the unloading stage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535082/
https://www.ncbi.nlm.nih.gov/pubmed/34681362
http://dx.doi.org/10.3390/foods10102314
work_keys_str_mv AT tanghan studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT xuchangsu studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT qixin studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT wangziming studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT wangjinfeng studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT zhouwenqi studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT wangqi studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage
AT wangjinwu studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage