Cargando…
Differentiable PAC–Bayes Objectives with Partially Aggregated Neural Networks
We make two related contributions motivated by the challenge of training stochastic neural networks, particularly in a PAC–Bayesian setting: (1) we show how averaging over an ensemble of stochastic neural networks enables a new class of partially-aggregated estimators, proving that these lead to unb...
Autores principales: | Biggs, Felix, Guedj, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535105/ https://www.ncbi.nlm.nih.gov/pubmed/34682004 http://dx.doi.org/10.3390/e23101280 |
Ejemplares similares
-
PAC-Bayes Unleashed: Generalisation Bounds with Unbounded Losses
por: Haddouche, Maxime, et al.
Publicado: (2021) -
Still No Free Lunches: The Price to Pay for Tighter PAC-Bayes Bounds
por: Guedj, Benjamin, et al.
Publicado: (2021) -
PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
por: Banerjee, Imon, et al.
Publicado: (2021) -
PAC++: object-oriented platform for accelerator codes
por: Malitsky, N, et al.
Publicado: (1994) -
Alterations of PAC-based resting state networks in Parkinson’s disease are partially alleviated by levodopa medication
por: Mertiens, Sean, et al.
Publicado: (2023)