Cargando…
Feature Selection for Regression Based on Gamma Test Nested Monte Carlo Tree Search
This paper investigates the nested Monte Carlo tree search (NMCTS) for feature selection on regression tasks. NMCTS starts out with an empty subset and uses search results of lower nesting level simulation. Level 0 is based on random moves until the path reaches the leaf node. In order to accomplish...
Autores principales: | Li, Ying, Li, Guohe, Guo, Lingun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535147/ https://www.ncbi.nlm.nih.gov/pubmed/34682055 http://dx.doi.org/10.3390/e23101331 |
Ejemplares similares
-
MOTiFS: Monte Carlo Tree Search Based Feature Selection
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2018) -
Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2020) -
Selective Inhibitor
Design for Kinase Homologs Using
Multiobjective Monte Carlo Tree Search
por: Yoshizawa, Tatsuya, et al.
Publicado: (2022) -
RNA inverse folding using Monte Carlo tree search
por: Yang, Xiufeng, et al.
Publicado: (2017) -
Retrosynthetic planning with experience-guided Monte Carlo tree search
por: Hong, Siqi, et al.
Publicado: (2023)