Cargando…
Network Autoregressive Model for the Prediction of COVID-19 Considering the Disease Interaction in Neighboring Countries
Predicting the way diseases spread in different societies has been thus far documented as one of the most important tools for control strategies and policy-making during a pandemic. This study is to propose a network autoregressive (NAR) model to forecast the number of total currently infected cases...
Autores principales: | Sioofy Khoojine, Arash, Shadabfar, Mahdi, Hosseini, Vahid Reza, Kordestani, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535150/ https://www.ncbi.nlm.nih.gov/pubmed/34681991 http://dx.doi.org/10.3390/e23101267 |
Ejemplares similares
-
A proposed fractional dynamic system and Monte Carlo-based back analysis for simulating the spreading profile of COVID-19
por: Sioofy Khoojine, Arash, et al.
Publicado: (2022) -
Time-variant reliability-based prediction of COVID-19 spread using extended SEIVR model and Monte Carlo sampling
por: Shadabfar, Mahdi, et al.
Publicado: (2021) -
Beam Damage Detection Under a Moving Load Using Random Decrement Technique and Savitzky–Golay Filter
por: Kordestani, Hadi, et al.
Publicado: (2019) -
Heterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX
por: Chin, Wen Cheong, et al.
Publicado: (2016) -
Prediction of Local Quality of Protein Structure Models Considering Spatial Neighbors in Graphical Models
por: Shin, Woong-Hee, et al.
Publicado: (2017)