Cargando…
Local Integral Regression Network for Cell Nuclei Detection †
Nuclei detection is a fundamental task in the field of histopathology image analysis and remains challenging due to cellular heterogeneity. Recent studies explore convolutional neural networks to either isolate them with sophisticated boundaries (segmentation-based methods) or locate the centroids o...
Autores principales: | Zhou, Xiao, Gu, Miao, Cheng, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535160/ https://www.ncbi.nlm.nih.gov/pubmed/34682060 http://dx.doi.org/10.3390/e23101336 |
Ejemplares similares
-
Nuclei Detection for 3D Microscopy With a Fully Convolutional Regression Network
por: LAPIERRE-LANDRY, MARYSE, et al.
Publicado: (2021) -
Multi-Path Dilated Residual Network for Nuclei Segmentation and Detection
por: Wang, Eric Ke, et al.
Publicado: (2019) -
Integrative regression network for genomic association study
por: Vangimalla, Reddy Rani, et al.
Publicado: (2016) -
Localization of HIV-1 RNA in mammalian nuclei
Publicado: (1996) -
Iterative Regression Based Hybrid Localization for Wireless Sensor Networks
por: Lee, Kyunghyun, et al.
Publicado: (2021)