Cargando…
Information Bottleneck Theory Based Exploration of Cascade Learning
In solving challenging pattern recognition problems, deep neural networks have shown excellent performance by forming powerful mappings between inputs and targets, learning representations (features) and making subsequent predictions. A recent tool to help understand how representations are formed i...
Autores principales: | Du, Xin, Farrahi, Katayoun, Niranjan, Mahesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535168/ https://www.ncbi.nlm.nih.gov/pubmed/34682084 http://dx.doi.org/10.3390/e23101360 |
Ejemplares similares
-
Information Bottleneck: Theory and Applications in Deep Learning
por: Geiger, Bernhard C., et al.
Publicado: (2020) -
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
por: Zuo, Lianrui, et al.
Publicado: (2021) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019) -
Nonlinear Information Bottleneck
por: Kolchinsky, Artemy, et al.
Publicado: (2019)