Cargando…
Predicting Physical Exercise Adherence in Fitness Apps Using a Deep Learning Approach
The use of mobile fitness apps has been on the rise for the last decade and especially during the worldwide SARS-CoV-2 pandemic, which led to the closure of gyms and to reduced outdoor mobility. Fitness apps constitute a promising means for promoting more active lifestyles, although their attrition...
Autores principales: | Jossa-Bastidas, Oscar, Zahia, Sofia, Fuente-Vidal, Andrea, Sánchez Férez, Néstor, Roda Noguera, Oriol, Montane, Joel, Garcia-Zapirain, Begonya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535546/ https://www.ncbi.nlm.nih.gov/pubmed/34682515 http://dx.doi.org/10.3390/ijerph182010769 |
Ejemplares similares
-
A Comparative Study between Scanning Devices for 3D Printing of Personalized Ostomy Patches
por: Zahia, Sofia, et al.
Publicado: (2022) -
Adherence to eHealth-Delivered Exercise in Adults with no Specific Health Conditions: A Scoping Review on a Conceptual Challenge
por: Fuente-Vidal, Andrea, et al.
Publicado: (2022) -
Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning
por: Zahia, Sofia, et al.
Publicado: (2020) -
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
por: Hameed, Zabit, et al.
Publicado: (2020) -
Managing and Controlling Stress Using mHealth: Systematic Search in App Stores
por: Blázquez Martín, David, et al.
Publicado: (2018)