Cargando…

Role of Ascorbic Acid in the Extraction and Quantification of Potato Polyphenol Oxidase Activity

The ability to accurately measure the activity of polyphenol oxidase (PPO) in complex matrices is essential. A problem encountered when using spectrophotometric methods is interference due to ascorbic acid (AA), often used as an enzyme “protecting agent” during PPO extraction. This study focuses on...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Shu, Penner, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535698/
https://www.ncbi.nlm.nih.gov/pubmed/34681535
http://dx.doi.org/10.3390/foods10102486
Descripción
Sumario:The ability to accurately measure the activity of polyphenol oxidase (PPO) in complex matrices is essential. A problem encountered when using spectrophotometric methods is interference due to ascorbic acid (AA), often used as an enzyme “protecting agent” during PPO extraction. This study focuses on the nature of AA’s effect on spectrophotometric determinations of PPO activity as well as enzyme extraction. Potato extracts and semi-purified PPO were used as enzyme sources. The inactivation of PPO attributed to AA is substrate-mediated. The extent of AA-dependent inactivation of PPO in model systems varied between substrates. AA only slows mechanism-based inactivation of PPO induced by catechol, possibly owing to the prevention of quinone formation. AA minimally protects PPO activity during enzyme extraction. The problem associated with AA in PPO assay could be circumvented by using ascorbate oxidase to remove AA when catechol is the primary substrate or by using chlorogenic acid as the primary substrate.