Cargando…
Landslide Susceptibility Assessment Using an AutoML Framework
The risks associated with landslides are increasing the personal losses and material damages in more and more areas of the world. These natural disasters are related to geological and extreme meteorological phenomena (e.g., earthquakes, hurricanes) occurring in regions that have already suffered sim...
Autores principales: | Bruzón, Adrián G., Arrogante-Funes, Patricia, Arrogante-Funes, Fátima, Martín-González, Fidel, Novillo, Carlos J., Fernández, Rubén R., Vázquez-Jiménez, René, Alarcón-Paredes, Antonio, Alonso-Silverio, Gustavo A., Cantu-Ramirez, Claudia A., Ramos-Bernal, Rocío N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535781/ https://www.ncbi.nlm.nih.gov/pubmed/34682717 http://dx.doi.org/10.3390/ijerph182010971 |
Ejemplares similares
-
Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment
por: Arrogante-Funes, Patricia, et al.
Publicado: (2021) -
AutoML for Fast Simulation
por: Nascimento Ferreira, Poliana
Publicado: (2021) -
Review of ML and AutoML Solutions to Forecast Time-Series Data
por: Alsharef, Ahmad, et al.
Publicado: (2022) -
Net-Net Auto Machine Learning (AutoML) Prediction of Complex Ecosystems
por: Barreiro, Enrique, et al.
Publicado: (2018) -
Optimization of running-in surface morphology parameters based on the AutoML model
por: Ge, Guangyuan, et al.
Publicado: (2021)