Cargando…
The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach
Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30–15(IFT) is a field test reflecting the effort elicited b...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535824/ https://www.ncbi.nlm.nih.gov/pubmed/34682594 http://dx.doi.org/10.3390/ijerph182010854 |
_version_ | 1784587877035802624 |
---|---|
author | Di Credico, Andrea Perpetuini, David Chiacchiaretta, Piero Cardone, Daniela Filippini, Chiara Gaggi, Giulia Merla, Arcangelo Ghinassi, Barbara Di Baldassarre, Angela Izzicupo, Pascal |
author_facet | Di Credico, Andrea Perpetuini, David Chiacchiaretta, Piero Cardone, Daniela Filippini, Chiara Gaggi, Giulia Merla, Arcangelo Ghinassi, Barbara Di Baldassarre, Angela Izzicupo, Pascal |
author_sort | Di Credico, Andrea |
collection | PubMed |
description | Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30–15(IFT) is a field test reflecting the effort elicited by HIIT, and the final velocity reached in the test is used to set the intensity of HIIT during the training session. In order to have a valid measure of the velocity during training, devices such as GPS can be used. However, in several situations (e.g., indoor setting), such devices do not provide reliable measures. The aim of the study was to predict exact running velocity during the 30–15(IFT) using accelerometry-derived metrics (i.e., Player Load and Average Net Force) and heart rate (HR) through a machine learning (ML) approach (i.e., Support Vector Machine) with a leave-one-subject-out cross-validation. The SVM approach showed the highest performance to predict running velocity (r = 0.91) when compared to univariate approaches using PL (r = 0.62), AvNetForce (r = 0.73) and HR only (r = 0.87). In conclusion, the presented multivariate ML approach is able to predict running velocity better than univariate ones, and the model is generalizable across subjects. |
format | Online Article Text |
id | pubmed-8535824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85358242021-10-23 The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach Di Credico, Andrea Perpetuini, David Chiacchiaretta, Piero Cardone, Daniela Filippini, Chiara Gaggi, Giulia Merla, Arcangelo Ghinassi, Barbara Di Baldassarre, Angela Izzicupo, Pascal Int J Environ Res Public Health Article Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30–15(IFT) is a field test reflecting the effort elicited by HIIT, and the final velocity reached in the test is used to set the intensity of HIIT during the training session. In order to have a valid measure of the velocity during training, devices such as GPS can be used. However, in several situations (e.g., indoor setting), such devices do not provide reliable measures. The aim of the study was to predict exact running velocity during the 30–15(IFT) using accelerometry-derived metrics (i.e., Player Load and Average Net Force) and heart rate (HR) through a machine learning (ML) approach (i.e., Support Vector Machine) with a leave-one-subject-out cross-validation. The SVM approach showed the highest performance to predict running velocity (r = 0.91) when compared to univariate approaches using PL (r = 0.62), AvNetForce (r = 0.73) and HR only (r = 0.87). In conclusion, the presented multivariate ML approach is able to predict running velocity better than univariate ones, and the model is generalizable across subjects. MDPI 2021-10-15 /pmc/articles/PMC8535824/ /pubmed/34682594 http://dx.doi.org/10.3390/ijerph182010854 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Di Credico, Andrea Perpetuini, David Chiacchiaretta, Piero Cardone, Daniela Filippini, Chiara Gaggi, Giulia Merla, Arcangelo Ghinassi, Barbara Di Baldassarre, Angela Izzicupo, Pascal The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title | The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title_full | The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title_fullStr | The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title_full_unstemmed | The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title_short | The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach |
title_sort | prediction of running velocity during the 30–15 intermittent fitness test using accelerometry-derived metrics and physiological parameters: a machine learning approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535824/ https://www.ncbi.nlm.nih.gov/pubmed/34682594 http://dx.doi.org/10.3390/ijerph182010854 |
work_keys_str_mv | AT dicredicoandrea thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT perpetuinidavid thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT chiacchiarettapiero thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT cardonedaniela thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT filippinichiara thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT gaggigiulia thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT merlaarcangelo thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT ghinassibarbara thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT dibaldassarreangela thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT izzicupopascal thepredictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT dicredicoandrea predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT perpetuinidavid predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT chiacchiarettapiero predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT cardonedaniela predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT filippinichiara predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT gaggigiulia predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT merlaarcangelo predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT ghinassibarbara predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT dibaldassarreangela predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach AT izzicupopascal predictionofrunningvelocityduringthe3015intermittentfitnesstestusingaccelerometryderivedmetricsandphysiologicalparametersamachinelearningapproach |