Cargando…
The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach
Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30–15(IFT) is a field test reflecting the effort elicited b...
Autores principales: | Di Credico, Andrea, Perpetuini, David, Chiacchiaretta, Piero, Cardone, Daniela, Filippini, Chiara, Gaggi, Giulia, Merla, Arcangelo, Ghinassi, Barbara, Di Baldassarre, Angela, Izzicupo, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535824/ https://www.ncbi.nlm.nih.gov/pubmed/34682594 http://dx.doi.org/10.3390/ijerph182010854 |
Ejemplares similares
-
Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging
por: Di Credico, Andrea, et al.
Publicado: (2022) -
Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine
por: Gaggi, Giulia, et al.
Publicado: (2019) -
Chemical and Biological Molecules Involved in Differentiation, Maturation, and Survival of Dopaminergic Neurons in Health and Parkinson’s Disease: Physiological Aspects and Clinical Implications
por: Gaggi, Giulia, et al.
Publicado: (2021) -
Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players
por: Di Credico, Andrea, et al.
Publicado: (2021) -
Human Mesenchymal Stromal Cells Unveil an Unexpected Differentiation Potential toward the Dopaminergic Neuronal Lineage
por: Gaggi, Giulia, et al.
Publicado: (2020)