Cargando…
Automatic Diagnosis of Mental Healthcare Information Actionability: Developing Binary Classifiers
We aimed to develop a quantitative instrument to assist with the automatic evaluation of the actionability of mental healthcare information. We collected and classified two large sets of mental health information from certified mental health websites: generic and patient-specific mental healthcare i...
Autores principales: | Ji, Meng, Xie, Wenxiu, Huang, Riliu, Qian, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536017/ https://www.ncbi.nlm.nih.gov/pubmed/34682483 http://dx.doi.org/10.3390/ijerph182010743 |
Ejemplares similares
-
Forecasting the Suitability of Online Mental Health Information for Effective Self-Care Developing Machine Learning Classifiers Using Natural Language Features
por: Ji, Meng, et al.
Publicado: (2021) -
Forecasting Erroneous Neural Machine Translation of Disease Symptoms: Development of Bayesian Probabilistic Classifiers for Cross-Lingual Health Translation
por: Ji, Meng, et al.
Publicado: (2021) -
Assessing Communicative Effectiveness of Public Health Information in Chinese: Developing Automatic Decision Aids for International Health Professionals
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Probabilistic Prediction of Nonadherence to Psychiatric Disorder Medication from Mental Health Forum Data: Developing and Validating Bayesian Machine Learning Classifiers
por: Ji, Meng, et al.
Publicado: (2022)