Cargando…
Meta-Learning for Few-Shot Plant Disease Detection
Plant diseases can harm crop growth, and the crop production has a deep impact on food. Although the existing works adopt Convolutional Neural Networks (CNNs) to detect plant diseases such as Apple Scab and Squash Powdery mildew, those methods have limitations as they rely on a large amount of manua...
Autores principales: | Chen, Liangzhe, Cui, Xiaohui, Li, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536056/ https://www.ncbi.nlm.nih.gov/pubmed/34681490 http://dx.doi.org/10.3390/foods10102441 |
Ejemplares similares
-
Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain
por: Lin, Hong, et al.
Publicado: (2022) -
Semi-supervised few-shot learning approach for plant diseases recognition
por: Li, Yang, et al.
Publicado: (2021) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Few-Shot Emergency Siren Detection
por: Cantarini, Michela, et al.
Publicado: (2022) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Wei, Ruoqi, et al.
Publicado: (2021)