Cargando…
33 Forecasting Daily Patient Arrivals during COVID-19 in Emergency Departments: A Deep Learning Approach
Autores principales: | Etu, E.-E., Monplaisir, L., Aguwa, C., Arslanturk, S., Masoud, S., Krupp, S., Shih, D., Miller, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Mosby, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536267/ http://dx.doi.org/10.1016/j.annemergmed.2021.09.041 |
Ejemplares similares
-
A Comparison of Univariate and Multivariate Forecasting Models Predicting Emergency Department Patient Arrivals during the COVID-19 Pandemic
por: Etu, Egbe-Etu, et al.
Publicado: (2022) -
Identifying indicators influencing emergency department performance during a medical surge: A consensus-based modified fuzzy Delphi approach
por: Etu, Egbe-Etu, et al.
Publicado: (2022) -
36 Emergency Department Visits for Pulmonary Embolism and Deep Venous Thrombosis After the Arrival of COVID-19
por: Martin, R., et al.
Publicado: (2021) -
39 Emergency Department Visits for Serious and Painful Conditions Markedly Decreased after the Arrival of COVID-19
por: Mekaeil, V., et al.
Publicado: (2020) -
365 Emergency Department Visits for Ovarian and Testicular Torsion After the Arrival of COVID-19
por: Espinosa, C., et al.
Publicado: (2021)