Cargando…

Improved ECG-Derived Respiration Using Empirical Wavelet Transform and Kernel Principal Component Analysis

Many methods have been developed to derive respiration signals from electrocardiograms (ECGs). However, traditional methods have two main issues: (1) focusing on certain specific morphological characteristics and (2) not considering the nonlinear relationship between ECGs and respiration. In this pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Shuxin, Li, Fenlan, Zhuang, Zhemin, Rao, Wenbin, Joseph Raj, Alex Noel, Rajangam, Vijayarajan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536429/
https://www.ncbi.nlm.nih.gov/pubmed/34691166
http://dx.doi.org/10.1155/2021/1360414
Descripción
Sumario:Many methods have been developed to derive respiration signals from electrocardiograms (ECGs). However, traditional methods have two main issues: (1) focusing on certain specific morphological characteristics and (2) not considering the nonlinear relationship between ECGs and respiration. In this paper, an improved ECG-derived respiration (EDR) based on empirical wavelet transform (EWT) and kernel principal component analysis (KPCA) is proposed. To tackle the first problem, EWT is introduced to decompose the ECG signal to extract the low-frequency part. To tackle the second issue, KPCA and preimaging are introduced to capture the nonlinear relationship between ECGs and respiration. The parameter selection of the radial basis function kernel in KPCA is also improved, ensuring accuracy and a reduction in computational cost. The correlation coefficient and amplitude square coherence coefficient are used as metrics to carry out quantitative and qualitative comparisons with three traditional EDR algorithms. The results show that the proposed method performs better than the traditional EDR algorithms in obtaining single-lead-EDR signals.