Cargando…

Experimental analysis of control technology and deformation failure mechanism of inclined coal seam roadway using non-contact DIC technique

The deformation and failure forms of inclined coal seam roadway under the joint action of dip angle and various geological conditions are complex, and there is a lack of targeted support measures, which brings great problems to the stability control of roadway surrounding rock. In order to safely an...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Xianyu, Dai, Jun, Ouyang, Yibo, Shen, Pan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536686/
https://www.ncbi.nlm.nih.gov/pubmed/34686754
http://dx.doi.org/10.1038/s41598-021-00462-9
Descripción
Sumario:The deformation and failure forms of inclined coal seam roadway under the joint action of dip angle and various geological conditions are complex, and there is a lack of targeted support measures, which brings great problems to the stability control of roadway surrounding rock. In order to safely and economically mine inclined coal seams, taking the engineering geology of Shitanjing No. 2 mining area as the background, and the physical similarity model of right-angle trapezoidal roadway in inclined coal seam, in which the non-contact digital image correlation (DIC) technology and the stress sensor is employed to provide full-field displacement and stress measurements. The deformation control technology of the roadway surrounding rock was proposed, verified by numerical simulation and applied to engineering practice. The research results show that the stress and deformation failure of surrounding rock in low sidewall of roadway are greater than those in high sidewall, showing asymmetric characteristics, and the maximum stress concentration coefficients of roadway sidewall, roof and floor are 4.1, 3.4 and 2.8, respectively. A concept of roadway "cyclic failure" mechanism is proposed that is, the cyclic interaction of the two sidewalls, the sharp angles and roof aggravated the failure of roadway, resulting in the overall instability of roadway. The roadway sidewall is serious rib spalling, the roof is asymmetric "Beret" type caving arch failure, and the floor is slightly bulging. On this basis, the principle of roadway deformation control is revealed and asymmetric support design is adopted, and the deformation of roadway is controlled, which support scheme is effective.