Cargando…

Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflec...

Descripción completa

Detalles Bibliográficos
Autores principales: McGhee, Kirsty E., Putintsev, Anton, Jayaprakash, Rahul, Georgiou, Kyriacos, O’Kane, Mary E., Kilbride, Rachel C., Cassella, Elena J., Cavazzini, Marco, Sannikov, Denis A., Lagoudakis, Pavlos G., Lidzey, David G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536762/
https://www.ncbi.nlm.nih.gov/pubmed/34686707
http://dx.doi.org/10.1038/s41598-021-00203-y
_version_ 1784588091324891136
author McGhee, Kirsty E.
Putintsev, Anton
Jayaprakash, Rahul
Georgiou, Kyriacos
O’Kane, Mary E.
Kilbride, Rachel C.
Cassella, Elena J.
Cavazzini, Marco
Sannikov, Denis A.
Lagoudakis, Pavlos G.
Lidzey, David G.
author_facet McGhee, Kirsty E.
Putintsev, Anton
Jayaprakash, Rahul
Georgiou, Kyriacos
O’Kane, Mary E.
Kilbride, Rachel C.
Cassella, Elena J.
Cavazzini, Marco
Sannikov, Denis A.
Lagoudakis, Pavlos G.
Lidzey, David G.
author_sort McGhee, Kirsty E.
collection PubMed
description We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO(2) and a Nb(2)O(5) film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror—caused by limited adhesion between the silver and the dielectric pair—apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.
format Online
Article
Text
id pubmed-8536762
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85367622021-10-25 Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror McGhee, Kirsty E. Putintsev, Anton Jayaprakash, Rahul Georgiou, Kyriacos O’Kane, Mary E. Kilbride, Rachel C. Cassella, Elena J. Cavazzini, Marco Sannikov, Denis A. Lagoudakis, Pavlos G. Lidzey, David G. Sci Rep Article We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO(2) and a Nb(2)O(5) film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror—caused by limited adhesion between the silver and the dielectric pair—apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold. Nature Publishing Group UK 2021-10-22 /pmc/articles/PMC8536762/ /pubmed/34686707 http://dx.doi.org/10.1038/s41598-021-00203-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
McGhee, Kirsty E.
Putintsev, Anton
Jayaprakash, Rahul
Georgiou, Kyriacos
O’Kane, Mary E.
Kilbride, Rachel C.
Cassella, Elena J.
Cavazzini, Marco
Sannikov, Denis A.
Lagoudakis, Pavlos G.
Lidzey, David G.
Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title_full Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title_fullStr Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title_full_unstemmed Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title_short Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror
title_sort polariton condensation in an organic microcavity utilising a hybrid metal-dbr mirror
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536762/
https://www.ncbi.nlm.nih.gov/pubmed/34686707
http://dx.doi.org/10.1038/s41598-021-00203-y
work_keys_str_mv AT mcgheekirstye polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT putintsevanton polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT jayaprakashrahul polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT georgioukyriacos polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT okanemarye polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT kilbriderachelc polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT cassellaelenaj polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT cavazzinimarco polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT sannikovdenisa polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT lagoudakispavlosg polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror
AT lidzeydavidg polaritoncondensationinanorganicmicrocavityutilisingahybridmetaldbrmirror