Cargando…
Single-Input Multi-Output U-Net for Automated 2D Foetal Brain Segmentation of MR Images
In this work, we develop the Single-Input Multi-Output U-Net (SIMOU-Net), a hybrid network for foetal brain segmentation inspired by the original U-Net fused with the holistically nested edge detection (HED) network. The SIMOU-Net is similar to the original U-Net but it has a deeper architecture and...
Autores principales: | Rampun, Andrik, Jarvis, Deborah, Griffiths, Paul D., Zwiggelaar, Reyer, Scotney, Bryan W., Armitage, Paul A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536962/ https://www.ncbi.nlm.nih.gov/pubmed/34677286 http://dx.doi.org/10.3390/jimaging7100200 |
Ejemplares similares
-
Normal appearances and dimensions of the foetal cavum septi pellucidi and vergae on in utero MR imaging
por: Jarvis, Deborah, et al.
Publicado: (2020) -
Status and Recommendations of Technological and Data-Driven Innovations in Cancer Care: Focus Group Study
por: Kondylakis, Haridimos, et al.
Publicado: (2020) -
A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero
por: Jarvis, Debbie, et al.
Publicado: (2016) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Analysis of errors made on in utero MR studies of the foetal brain in the MERIDIAN study
por: Batty, Ruth, et al.
Publicado: (2018)