Cargando…
Assembly of a Benthic Microbial Community in a Eutrophic Bay with a Long History of Oyster Culturing
The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial communit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536970/ https://www.ncbi.nlm.nih.gov/pubmed/34683340 http://dx.doi.org/10.3390/microorganisms9102019 |
Sumario: | The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial community assembly. In the present study, top and bottom sediments from an oyster-culture area and non-culture area, in a eutrophic bay with a long history of oyster culturing, were obtained for environmental parameter measurement and microbe identification. Deterministic and stochastic processes in microbial community assembly were assessed. In particular, keystone species identification through network analysis was combined with measured environmental parameters to determine the factors related to community assembly processes. Our results suggest that oyster culturing relates to greater variation in both biological and non-biological sediment profiles. In benthic communities, Proteobacteria and Chloroflexi were the most abundant phyla, and community compositions were significantly different between sample groups. We also found that community assembly was more affected by deterministic factors than stochastic ones, when oysters were present. Moisture, or water content, and pH were identified as affecting deterministic and stochastic processes, respectively, but only water content was a driver associated with oyster culturing. Additionally, although keystone species presented a similar pattern of composition to peripheral species, they responded to their environments differently. Furthermore, model selection, fitting keystone species to community assembly processes, indicates their role in shaping microbial communities. |
---|