Cargando…
Curated Database and Preliminary AutoML QSAR Model for 5-HT1A Receptor
Introduction of a new drug to the market is a challenging and resource-consuming process. Predictive models developed with the use of artificial intelligence could be the solution to the growing need for an efficient tool which brings practical and knowledge benefits, but requires a large amount of...
Autores principales: | Czub, Natalia, Pacławski, Adam, Szlęk, Jakub, Mendyk, Aleksander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536971/ https://www.ncbi.nlm.nih.gov/pubmed/34684004 http://dx.doi.org/10.3390/pharmaceutics13101711 |
Ejemplares similares
-
Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT(1A) Receptor Case
por: Czub, Natalia, et al.
Publicado: (2022) -
AutoML for Fast Simulation
por: Nascimento Ferreira, Poliana
Publicado: (2021) -
Puzzle out Machine Learning Model-Explaining Disintegration Process in ODTs
por: Szlęk, Jakub, et al.
Publicado: (2022) -
Artificial
Intelligence-Based Quantitative Structure–Property
Relationship Model for Predicting Human Intestinal Absorption of Compounds
with Serotonergic Activity
por: Czub, Natalia, et al.
Publicado: (2023) -
Review of ML and AutoML Solutions to Forecast Time-Series Data
por: Alsharef, Ahmad, et al.
Publicado: (2022)