Cargando…
DCPNet: A Densely Connected Pyramid Network for Monocular Depth Estimation
Pyramid architecture is a useful strategy to fuse multi-scale features in deep monocular depth estimation approaches. However, most pyramid networks fuse features only within the adjacent stages in a pyramid structure. To take full advantage of the pyramid structure, inspired by the success of Dense...
Autores principales: | Lai, Zhitong, Tian, Rui, Wu, Zhiguo, Ding, Nannan, Sun, Linjian, Wang, Yanjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536973/ https://www.ncbi.nlm.nih.gov/pubmed/34695993 http://dx.doi.org/10.3390/s21206780 |
Ejemplares similares
-
An Extremely Effective Spatial Pyramid and Pixel Shuffle Upsampling Decoder for Multiscale Monocular Depth Estimation
por: Luo, Huilan, et al.
Publicado: (2022) -
Monocular Depth Estimation Using a Laplacian Image Pyramid with Local Planar Guidance Layers
por: Choi, Youn-Ho, et al.
Publicado: (2023) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023) -
Unsupervised Monocular Depth Estimation for Colonoscope System Using Feedback Network
por: Hwang, Seung-Jun, et al.
Publicado: (2021) -
GFI-Net: Global Feature Interaction Network for Monocular Depth Estimation
por: Zhang, Cong, et al.
Publicado: (2023)