Cargando…
A Comparison of Bottom-Up Models for Spatial Saliency Predictions in Autonomous Driving
Bottom-up saliency models identify the salient regions of an image based on features such as color, intensity and orientation. These models are typically used as predictors of human visual behavior and for computer vision tasks. In this paper, we conduct a systematic evaluation of the saliency maps...
Autores principales: | Maldonado, Jaime, Giefer, Lino Antoni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536998/ https://www.ncbi.nlm.nih.gov/pubmed/34696044 http://dx.doi.org/10.3390/s21206825 |
Ejemplares similares
-
A spiking model of superior colliculus for bottom-up saliency
por: Richert, Micah, et al.
Publicado: (2013) -
Emergence of bottom-up saliency in a spiking model of V1
por: Szatmáry, Botond, et al.
Publicado: (2013) -
Modeling Visual Exploration in Rhesus Macaques with Bottom-Up Salience and Oculomotor Statistics
por: König, Seth D., et al.
Publicado: (2016) -
Rapid Ocular Responses Are Modulated by Bottom-up-Driven Auditory Salience
por: Zhao, Sijia, et al.
Publicado: (2019) -
Bottom-up saliency and top-down learning in the primary visual cortex of monkeys
por: Yan, Yin, et al.
Publicado: (2018)