Cargando…

Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations

Despite recent stereo matching algorithms achieving significant results on public benchmarks, the problem of requiring heavy computation remains unsolved. Most works focus on designing an architecture to reduce the computational complexity, while we take aim at optimizing 3D convolution kernels on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Jianqiang, Ma, Dianbo, Yamane, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537023/
https://www.ncbi.nlm.nih.gov/pubmed/34696021
http://dx.doi.org/10.3390/s21206808
_version_ 1784588149102477312
author Xiao, Jianqiang
Ma, Dianbo
Yamane, Satoshi
author_facet Xiao, Jianqiang
Ma, Dianbo
Yamane, Satoshi
author_sort Xiao, Jianqiang
collection PubMed
description Despite recent stereo matching algorithms achieving significant results on public benchmarks, the problem of requiring heavy computation remains unsolved. Most works focus on designing an architecture to reduce the computational complexity, while we take aim at optimizing 3D convolution kernels on the Pyramid Stereo Matching Network (PSMNet) for solving the problem. In this paper, we design a series of comparative experiments exploring the performance of well-known convolution kernels on PSMNet. Our model saves the computational complexity from [Formula: see text] G MAdd (Multiply-Add operations) to [Formula: see text] G MAdd ([Formula: see text] G MAdd to [Formula: see text] G MAdd for only considering 3D convolutional neural networks) without losing accuracy. On Scene Flow and KITTI 2015 datasets, our model achieves results comparable to the state-of-the-art with a low computational cost.
format Online
Article
Text
id pubmed-8537023
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85370232021-10-24 Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations Xiao, Jianqiang Ma, Dianbo Yamane, Satoshi Sensors (Basel) Article Despite recent stereo matching algorithms achieving significant results on public benchmarks, the problem of requiring heavy computation remains unsolved. Most works focus on designing an architecture to reduce the computational complexity, while we take aim at optimizing 3D convolution kernels on the Pyramid Stereo Matching Network (PSMNet) for solving the problem. In this paper, we design a series of comparative experiments exploring the performance of well-known convolution kernels on PSMNet. Our model saves the computational complexity from [Formula: see text] G MAdd (Multiply-Add operations) to [Formula: see text] G MAdd ([Formula: see text] G MAdd to [Formula: see text] G MAdd for only considering 3D convolutional neural networks) without losing accuracy. On Scene Flow and KITTI 2015 datasets, our model achieves results comparable to the state-of-the-art with a low computational cost. MDPI 2021-10-13 /pmc/articles/PMC8537023/ /pubmed/34696021 http://dx.doi.org/10.3390/s21206808 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xiao, Jianqiang
Ma, Dianbo
Yamane, Satoshi
Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title_full Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title_fullStr Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title_full_unstemmed Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title_short Optimizing 3D Convolution Kernels on Stereo Matching for Resource Efficient Computations
title_sort optimizing 3d convolution kernels on stereo matching for resource efficient computations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537023/
https://www.ncbi.nlm.nih.gov/pubmed/34696021
http://dx.doi.org/10.3390/s21206808
work_keys_str_mv AT xiaojianqiang optimizing3dconvolutionkernelsonstereomatchingforresourceefficientcomputations
AT madianbo optimizing3dconvolutionkernelsonstereomatchingforresourceefficientcomputations
AT yamanesatoshi optimizing3dconvolutionkernelsonstereomatchingforresourceefficientcomputations