Cargando…

Analysis of Bacteriohopanoids from Thermophilic Bacteria by Liquid Chromatography–Mass Spectrometry

Background: Hopanoids modify plasma membrane properties in bacteria and are often compared to sterols that modulate membrane fluidity in eukaryotes. In some microorganisms, they can also allow adaptations to extreme environments. Methods: Hopanoids were identified by liquid chromatography–mass spect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolouchová, Irena, Timkina, Elizaveta, Maťátková, Olga, Kyselová, Lucie, Řezanka, Tomáš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537080/
https://www.ncbi.nlm.nih.gov/pubmed/34683383
http://dx.doi.org/10.3390/microorganisms9102062
Descripción
Sumario:Background: Hopanoids modify plasma membrane properties in bacteria and are often compared to sterols that modulate membrane fluidity in eukaryotes. In some microorganisms, they can also allow adaptations to extreme environments. Methods: Hopanoids were identified by liquid chromatography–mass spectrometry in fourteen strains of thermophilic bacteria belonging to five genera, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus. The bacteria were cultivated at temperatures from 42 to 70 °C. Results: Regardless of the source of origin, the strains have the same tendency to adapt the hopanoid content depending on the cultivation temperature. In the case of aminopentol, its content increases; aminotetrol does not show a significant change; and in the case of aminotriol the content decreases by almost a third. The content of bacteriohopanetetrol and bacteriohopanetetrol glycoside decreases with increasing temperature, while in the case of adenosylhopane the opposite trend was found. Conclusions: Changes in hopanoid content can be explained by increased biosynthesis, where adenosylhopane is the first intermediate in the biosynthesis of the hopanoid side chain.