Cargando…
Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications
The increasing demand for building materials in the road industry creates interest for a new source of high-quality aggregates. In order to conserve natural resources, more attention is focused on anthropogenic soils and industrial solid wastes. For the successful application of these types of soil,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537200/ https://www.ncbi.nlm.nih.gov/pubmed/34683619 http://dx.doi.org/10.3390/ma14206029 |
_version_ | 1784588193052491776 |
---|---|
author | Sas, Wojciech Dzięcioł, Justyna Radzevičius, Algirdas Radziemska, Maja Dapkienė, Midona Šadzevičius, Raimondas Skominas, Rytis Głuchowski, Andrzej |
author_facet | Sas, Wojciech Dzięcioł, Justyna Radzevičius, Algirdas Radziemska, Maja Dapkienė, Midona Šadzevičius, Raimondas Skominas, Rytis Głuchowski, Andrzej |
author_sort | Sas, Wojciech |
collection | PubMed |
description | The increasing demand for building materials in the road industry creates interest for a new source of high-quality aggregates. In order to conserve natural resources, more attention is focused on anthropogenic soils and industrial solid wastes. For the successful application of these types of soil, a series of geotechnical and environmental tests have to be conducted. A potential hazard in the reuse of wastes from thermal degradation in the construction industry, particularly in reinforced concrete (RC) construction, is the migration of heavy metals into the groundwater environment. In this article, a geotechnical assessment of blast furnace slag (BFS) properties is presented. We conducted a series of CBR, and oedometric tests to evaluate the feasibility of BFS application in earth construction. The oedometric test results show acceptable compression characteristics which are in the range of natural aggregates. The CBR shows that this material may be used as a pavement subbase. We also noticed the preconsolidation pressure phenomenon in both Proctor and vibro-compacted soil during the oedometric test. The compression index and recompression index value show that the compression characteristics are close to those of dense sand. Based on the results described in the article, blast furnace slag is a candidate for technological application and can become one of the elements of sustainable development by contributing to a reduction in the negative environmental impact of production and use of building materials. |
format | Online Article Text |
id | pubmed-8537200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85372002021-10-24 Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications Sas, Wojciech Dzięcioł, Justyna Radzevičius, Algirdas Radziemska, Maja Dapkienė, Midona Šadzevičius, Raimondas Skominas, Rytis Głuchowski, Andrzej Materials (Basel) Article The increasing demand for building materials in the road industry creates interest for a new source of high-quality aggregates. In order to conserve natural resources, more attention is focused on anthropogenic soils and industrial solid wastes. For the successful application of these types of soil, a series of geotechnical and environmental tests have to be conducted. A potential hazard in the reuse of wastes from thermal degradation in the construction industry, particularly in reinforced concrete (RC) construction, is the migration of heavy metals into the groundwater environment. In this article, a geotechnical assessment of blast furnace slag (BFS) properties is presented. We conducted a series of CBR, and oedometric tests to evaluate the feasibility of BFS application in earth construction. The oedometric test results show acceptable compression characteristics which are in the range of natural aggregates. The CBR shows that this material may be used as a pavement subbase. We also noticed the preconsolidation pressure phenomenon in both Proctor and vibro-compacted soil during the oedometric test. The compression index and recompression index value show that the compression characteristics are close to those of dense sand. Based on the results described in the article, blast furnace slag is a candidate for technological application and can become one of the elements of sustainable development by contributing to a reduction in the negative environmental impact of production and use of building materials. MDPI 2021-10-13 /pmc/articles/PMC8537200/ /pubmed/34683619 http://dx.doi.org/10.3390/ma14206029 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sas, Wojciech Dzięcioł, Justyna Radzevičius, Algirdas Radziemska, Maja Dapkienė, Midona Šadzevičius, Raimondas Skominas, Rytis Głuchowski, Andrzej Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title | Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title_full | Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title_fullStr | Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title_full_unstemmed | Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title_short | Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications |
title_sort | geotechnical and environmental assessment of blast furnace slag for engineering applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537200/ https://www.ncbi.nlm.nih.gov/pubmed/34683619 http://dx.doi.org/10.3390/ma14206029 |
work_keys_str_mv | AT saswojciech geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT dzieciołjustyna geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT radzeviciusalgirdas geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT radziemskamaja geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT dapkienemidona geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT sadzeviciusraimondas geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT skominasrytis geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications AT głuchowskiandrzej geotechnicalandenvironmentalassessmentofblastfurnaceslagforengineeringapplications |