Cargando…

Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range

Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jmerik, Valentin, Nechaev, Dmitrii, Orekhova, Kseniya, Prasolov, Nikita, Kozlovsky, Vladimir, Sviridov, Dmitry, Zverev, Mikhail, Gamov, Nikita, Grieger, Lars, Wang, Yixin, Wang, Tao, Wang, Xinqiang, Ivanov, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537242/
https://www.ncbi.nlm.nih.gov/pubmed/34684994
http://dx.doi.org/10.3390/nano11102553
_version_ 1784588203440734208
author Jmerik, Valentin
Nechaev, Dmitrii
Orekhova, Kseniya
Prasolov, Nikita
Kozlovsky, Vladimir
Sviridov, Dmitry
Zverev, Mikhail
Gamov, Nikita
Grieger, Lars
Wang, Yixin
Wang, Tao
Wang, Xinqiang
Ivanov, Sergey
author_facet Jmerik, Valentin
Nechaev, Dmitrii
Orekhova, Kseniya
Prasolov, Nikita
Kozlovsky, Vladimir
Sviridov, Dmitry
Zverev, Mikhail
Gamov, Nikita
Grieger, Lars
Wang, Yixin
Wang, Tao
Wang, Xinqiang
Ivanov, Sergey
author_sort Jmerik, Valentin
collection PubMed
description Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75–7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB(6)) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA.
format Online
Article
Text
id pubmed-8537242
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85372422021-10-24 Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range Jmerik, Valentin Nechaev, Dmitrii Orekhova, Kseniya Prasolov, Nikita Kozlovsky, Vladimir Sviridov, Dmitry Zverev, Mikhail Gamov, Nikita Grieger, Lars Wang, Yixin Wang, Tao Wang, Xinqiang Ivanov, Sergey Nanomaterials (Basel) Article Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75–7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB(6)) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA. MDPI 2021-09-29 /pmc/articles/PMC8537242/ /pubmed/34684994 http://dx.doi.org/10.3390/nano11102553 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jmerik, Valentin
Nechaev, Dmitrii
Orekhova, Kseniya
Prasolov, Nikita
Kozlovsky, Vladimir
Sviridov, Dmitry
Zverev, Mikhail
Gamov, Nikita
Grieger, Lars
Wang, Yixin
Wang, Tao
Wang, Xinqiang
Ivanov, Sergey
Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title_full Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title_fullStr Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title_full_unstemmed Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title_short Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
title_sort monolayer-scale gan/aln multiple quantum wells for high power e-beam pumped uv-emitters in the 240–270 nm spectral range
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537242/
https://www.ncbi.nlm.nih.gov/pubmed/34684994
http://dx.doi.org/10.3390/nano11102553
work_keys_str_mv AT jmerikvalentin monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT nechaevdmitrii monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT orekhovakseniya monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT prasolovnikita monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT kozlovskyvladimir monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT sviridovdmitry monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT zverevmikhail monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT gamovnikita monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT griegerlars monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT wangyixin monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT wangtao monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT wangxinqiang monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange
AT ivanovsergey monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange