Cargando…
Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range
Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537242/ https://www.ncbi.nlm.nih.gov/pubmed/34684994 http://dx.doi.org/10.3390/nano11102553 |
_version_ | 1784588203440734208 |
---|---|
author | Jmerik, Valentin Nechaev, Dmitrii Orekhova, Kseniya Prasolov, Nikita Kozlovsky, Vladimir Sviridov, Dmitry Zverev, Mikhail Gamov, Nikita Grieger, Lars Wang, Yixin Wang, Tao Wang, Xinqiang Ivanov, Sergey |
author_facet | Jmerik, Valentin Nechaev, Dmitrii Orekhova, Kseniya Prasolov, Nikita Kozlovsky, Vladimir Sviridov, Dmitry Zverev, Mikhail Gamov, Nikita Grieger, Lars Wang, Yixin Wang, Tao Wang, Xinqiang Ivanov, Sergey |
author_sort | Jmerik, Valentin |
collection | PubMed |
description | Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75–7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB(6)) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA. |
format | Online Article Text |
id | pubmed-8537242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85372422021-10-24 Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range Jmerik, Valentin Nechaev, Dmitrii Orekhova, Kseniya Prasolov, Nikita Kozlovsky, Vladimir Sviridov, Dmitry Zverev, Mikhail Gamov, Nikita Grieger, Lars Wang, Yixin Wang, Tao Wang, Xinqiang Ivanov, Sergey Nanomaterials (Basel) Article Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75–7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB(6)) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA. MDPI 2021-09-29 /pmc/articles/PMC8537242/ /pubmed/34684994 http://dx.doi.org/10.3390/nano11102553 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jmerik, Valentin Nechaev, Dmitrii Orekhova, Kseniya Prasolov, Nikita Kozlovsky, Vladimir Sviridov, Dmitry Zverev, Mikhail Gamov, Nikita Grieger, Lars Wang, Yixin Wang, Tao Wang, Xinqiang Ivanov, Sergey Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title_full | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title_fullStr | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title_full_unstemmed | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title_short | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range |
title_sort | monolayer-scale gan/aln multiple quantum wells for high power e-beam pumped uv-emitters in the 240–270 nm spectral range |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537242/ https://www.ncbi.nlm.nih.gov/pubmed/34684994 http://dx.doi.org/10.3390/nano11102553 |
work_keys_str_mv | AT jmerikvalentin monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT nechaevdmitrii monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT orekhovakseniya monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT prasolovnikita monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT kozlovskyvladimir monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT sviridovdmitry monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT zverevmikhail monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT gamovnikita monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT griegerlars monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT wangyixin monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT wangtao monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT wangxinqiang monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange AT ivanovsergey monolayerscaleganalnmultiplequantumwellsforhighpowerebeampumpeduvemittersinthe240270nmspectralrange |