Cargando…
Characteristics and Preparation of Designed Alginate-Based Composite Scaffold Membranes with Decellularized Fibrous Micro-Scaffold Structures from Porcine Skin
Alginate-based composite scaffold membranes with various ratios of decellularized extracellular matrices could be designed and obtained from porcine skin tissue by using supercritical carbon dioxide fluid technology. Retention of decellularized extracellular matrix (dECM) and scaffold-structure inte...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537326/ https://www.ncbi.nlm.nih.gov/pubmed/34685220 http://dx.doi.org/10.3390/polym13203464 |
Sumario: | Alginate-based composite scaffold membranes with various ratios of decellularized extracellular matrices could be designed and obtained from porcine skin tissue by using supercritical carbon dioxide fluid technology. Retention of decellularized extracellular matrix (dECM) and scaffold-structure integrity was observed. This work provides a simple and time-saving process for the preparation of biomedical alginate-based composite scaffold membranes with fibrous dECM micro-scaffolds, which were further characterized by Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), and scanning electron microscope (SEM). The introduction of fibrous dECM micro-scaffolds enhanced the thermal stability and provided expected effects on the biological properties of the designed composite scaffold membranes in regenerative applications. |
---|