Cargando…
Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis
The increase in the number of revision surgeries after a total knee replacement surgery reaches 19%. One of the reasons for the majority of revisions relates to the debris of the ultra-high molecular weight polyethylene that serves to facilitate the sliding between the femoral and tibial components....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537328/ https://www.ncbi.nlm.nih.gov/pubmed/34683542 http://dx.doi.org/10.3390/ma14205951 |
_version_ | 1784588224223510528 |
---|---|
author | Suffo, Miguel Revenga, Carlos |
author_facet | Suffo, Miguel Revenga, Carlos |
author_sort | Suffo, Miguel |
collection | PubMed |
description | The increase in the number of revision surgeries after a total knee replacement surgery reaches 19%. One of the reasons for the majority of revisions relates to the debris of the ultra-high molecular weight polyethylene that serves to facilitate the sliding between the femoral and tibial components. This paper addresses the biomechanical properties of ULTEM(TM) 1010 in a totally new knee replacement design, based on one of the commercial models of the Stryker manufacturer. It is designed and produced through additive manufacturing that replaces the tibial component and the polyethylene in such a way as to reduce the pieces that are part of the prosthetic assembly to only two: the femoral and the tibial (the so-called “two-component knee prosthesis”). The cytotoxicity as well as the live/dead tests carried out on a series of biomaterials guarantee the best osteointegration of the studied material. The finite element simulation method guarantees the stability of the material before a load of 2000 N is applied in the bending angles 0°, 30°, 60°, 90°, and 120°. Thus, the non-metallic prosthetic material and approach represent a promising alternative for metal-allergic patients. |
format | Online Article Text |
id | pubmed-8537328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85373282021-10-24 Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis Suffo, Miguel Revenga, Carlos Materials (Basel) Article The increase in the number of revision surgeries after a total knee replacement surgery reaches 19%. One of the reasons for the majority of revisions relates to the debris of the ultra-high molecular weight polyethylene that serves to facilitate the sliding between the femoral and tibial components. This paper addresses the biomechanical properties of ULTEM(TM) 1010 in a totally new knee replacement design, based on one of the commercial models of the Stryker manufacturer. It is designed and produced through additive manufacturing that replaces the tibial component and the polyethylene in such a way as to reduce the pieces that are part of the prosthetic assembly to only two: the femoral and the tibial (the so-called “two-component knee prosthesis”). The cytotoxicity as well as the live/dead tests carried out on a series of biomaterials guarantee the best osteointegration of the studied material. The finite element simulation method guarantees the stability of the material before a load of 2000 N is applied in the bending angles 0°, 30°, 60°, 90°, and 120°. Thus, the non-metallic prosthetic material and approach represent a promising alternative for metal-allergic patients. MDPI 2021-10-10 /pmc/articles/PMC8537328/ /pubmed/34683542 http://dx.doi.org/10.3390/ma14205951 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Suffo, Miguel Revenga, Carlos Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title | Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title_full | Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title_fullStr | Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title_full_unstemmed | Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title_short | Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis |
title_sort | biomechanical analysis of non-metallic biomaterial in the manufacture of a new knee prosthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537328/ https://www.ncbi.nlm.nih.gov/pubmed/34683542 http://dx.doi.org/10.3390/ma14205951 |
work_keys_str_mv | AT suffomiguel biomechanicalanalysisofnonmetallicbiomaterialinthemanufactureofanewkneeprosthesis AT revengacarlos biomechanicalanalysisofnonmetallicbiomaterialinthemanufactureofanewkneeprosthesis |